Find the first 5 terms of the sequence defined by the explicit rule $f(n) = 8n + 6$. Assume that the domain of each function is the set of whole numbers greater than 0.
Use the explicit rule and substitute the values 1 through 5 for n.
f(1) = 8(1) + 6 = 14
f(2) = 8(2) + 6 = 22
f(3) = 8(3) + 6 = 30
f(4) = 8(4) + 6 = 38
f(5) = 8(5) + 6 = 46
The first five terms are 14, 22, 30, 38, 46.
EXERCISES
3. Does $y = 6x + 5$ represent a function? Explain your answer. (Lesson 5.2) Yes. For every x-value there is only one y-value.
4. Given the functions $f(x) = 7x - 2$ and $g(x) = 3x + 6$, find the value of x for which $f(x) = g(x)$. (Lesson 5.2) $x = 2$ Consider the function $y = 2x + 8$. Determine if each ordered pair is a
solution. (Lesson 5.1)
5. (1, 10) 6. (3, 16) No
7. (4, 16) Yes 8. (5, 20) No
Write the first four terms of the sequence. The domain of the function is the set of consecutive integers starting with 1. (Lesson 5.3)
9. $f(n) = 3n(n+3)$ 12, 30, 54, 84

10. f(n) = 2(n+3) ______ 8, 10, 12, 14

12. f(1) = 4 and f(n) = 2 * f(n-1) + 3 4, 11, 25, 53